HOMOMORPHISMS OF COMMUTATIVE CANCELLATIVE SEMIGROUPS INTO NONNEGATIVE REAL NUMBERS

RY

MOHAN S. PUTCHA AND TAKAYUKI TAMURA

ABSTRACT. Let S be a commutative cancellative semigroup and T_0 be a cofinal subsemigroup of S. Let h_0 be a homomorphism of T_0 into the semigroup of nonnegative real numbers under addition. We prove that Kobayashi's condition [2] is necessary and sufficient for h_0 to be extended to S. Further, we find a necessary and sufficient condition in order that the extension be unique. Related to this, the "boundedness condition" is introduced. For further study, several examples are given.

1. Introduction. A commutative cancellative archimedean idempotent-free semigroup is called an n-semigroup. Kobayashi [2] proved the following:

THEOREM 1.1. Let T_0 be a subsemigroup of an \mathfrak{N} -semigroup S and let h_0 be a homomorphism of T_0 into the semigroup R^0_+ of nonnegative real numbers under addition. Then h_0 can be extended to a homomorphism of S into R^0_+ if and only if the pair $\langle T_0, h_0 \rangle$ satisfies the following condition: if $x, y \in T_0$ and $x \mid y \pmod{x}$ in S, then $h_0(x) \leq h_0(y)$.

One of the authors [4] has studied the homomorphisms of T_0 into \mathbf{R}_+ from the viewpoint of positive quasi-orders. In this paper, we treat the homomorphisms of T_0 into the nonnegative real numbers in the case when S is a commutative cancellative semigroup and T is its subsemigroup. Theorem 2.1 will be a straightforward generalization of the classical result that characters can be extended from a subgroup of an abelian group G to G itself. In §2, we will show that Theorem 1.1 holds if T_0 is cofinal in S. In §3, we will introduce a "boundedness condition" and discuss the relation between this condition and the extension of a homomorphism beyond a filter. In §4, we will give a few examples, which show that Theorem 2.1 does not necessarily hold if T_0 is not cofinal.

A subsemigroup U of a commutative semigroup S is called unitary in S if

Received by the editors November 13, 1974.

AMS (MOS) subject classifications (1970). Primary 20M99.

Key words and phrases. Commutative cancellative (idempotent-free) semigroup, cofinal subsemigroup, unitary subsemigroup, homomorphism, K-condition, B-condition (boundedness condition), unitary closure, filter, filter closure.

 $x \in S$, $a \in U$ and $ax \in U$ imply $x \in U$. U is called cofinal in S if, for every $x \in S$, there is a $y \in S$ such that $xy \in U$. As is well known, see [1] or [5], a unitary cofinal subsemigroup U induces a group congruence ρ_U on S defined by $x \rho_U y$ if and only if ax = by for some $a, b \in U$. We denote S/ρ_U by S/U. Furthermore the kernel of $S \longrightarrow S/U$ coincides with U.

Let T be a nonempty subsemigroup of S. The smallest unitary subsemigroup \overline{T} of S containing the subsemigroup T is called the unitary closure of T in S. \overline{T} is given by

$$\overline{T} = \{x \in S: xt \in T \text{ for some } t \in T\}$$

A nonempty subsemigroup F of S is called a filter of S [3] if $x, y \in S$ and $xy \in F$ implies $x, y \in F$. The smallest filter \widetilde{T} of S containing the subsemigroup T is called the filter closure of T in S. Then

$$\widetilde{T} = \{x \in S: xy \in T \text{ for some } y \in S\}.$$

(1.2) The following hold.

(1.2.1) $T \to \overline{T}$ and $T \to \widetilde{T}$ are closure mappings, that is, $T \subseteq \overline{T}$, $T \subseteq \widetilde{T}$. $T_1 \subseteq T_2$ implies $\overline{T}_1 \subseteq \overline{T}_2$ and $T_1 \subseteq T_2$. $\overline{T} = \overline{T}$.

(1.2.2) \overline{T} is unitary in S, \widetilde{T} is a filter in S, and T is cofinal in \widetilde{T} .

 $(1.2.3) \quad \widetilde{T} = \widetilde{\overline{T}} = \widetilde{\overline{T}}.$

(1.2.4) $\overline{T} \subseteq \widetilde{T}$ and \overline{T} is unitary cofinal in \widetilde{T} .

Throughout this paper, R denotes the set of real numbers, R the set of rational numbers, R_+ (R_-) the set of positive (negative) real numbers; R_+^0 (R_-^0) the set of nonnegative (nonpositive) real numbers; Z_+ (Z_-) the set of positive (negative) integers and Z_+^0 (Z_-^0) the set of nonnegative (nonpositive) integers.

If S is a semigroup and if X is a subsemigroup of the additive group R, then the notation $\operatorname{Hom}(S,X)$ denotes the semigroup of homomorphisms of S into X under the usual operation. Let X_1, X_2, Y_1 and Y_2 be commutative semigroups such that $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$. Let $h_1 \in \operatorname{Hom}(X_1, Y_1)$ and $h_2 \in \operatorname{Hom}(X_2, Y_2)$. If $h_2 | X_1 = h_1$, we say that h_1 of $\operatorname{Hom}(X_1, Y_1)$ is extended to h_2 of $\operatorname{Hom}(X_2, Y_2)$; in particular, if $Y_1 = Y_2$, we say that h_1 of $\operatorname{Hom}(X_1, Y_1)$ is extended to X_2 . If the extension h_2 of h_1 of $\operatorname{Hom}(X_1, Y_1)$ to X_2 is unique, we say that h_1 of $\operatorname{Hom}(X_1, Y_1)$ is uniquely extended to X_2 . Let $h \in \operatorname{Hom}(S, \mathbb{R})$. h is called trivial if h(x) = 0 for all $x \in S$.

In this paper the binary operation in a commutative semigroup will be denoted by addition, i.e. +.

2. Extensions from cofinal subsemigroups. In this section, we will prove the following generalization of Theorem 1.1.

THEOREM 2.1. Let T_0 be a cofinal subsemigroup of a commutative cancellative semigroup S and let h_0 be a homomorphism of T_0 into the additive semigroup R^0_+ of nonnegative real numbers. Then h_0 can be extended to S if and only if

(K)
$$t_1 \in S + t_2 \text{ implies } h_0(t_1) \ge h_0(t_2) \text{ for all } t_1, t_2 \in T_0.$$

In this paper, the condition (K) will be called the K-condition. It is obvious that if h_0 can be extended to S then the K-condition must hold. We will prove sufficiency. Let X denote the set of pairs $\langle T, h \rangle$ where T is a subsemigroup of S containing T_0 and $h \in \text{Hom}(T, \mathbb{R}^0_+)$ such that $h \mid T_0 = h_0$ and $\langle T, h \rangle$ satisfies the K-condition.

Let [a] be the cyclic subsemigroup generated by a and let [T, a] be the subsemigroup generated by T and a, i.e.,

$$[T, a] = T \cup (T + [a]) \cup [a].$$

LEMMA 2.2. Let $\langle T, h \rangle \in X$ and suppose that $a \in S$ and $(T + [a]) \cap T \neq \emptyset$. Then there exists $h': [T, a] \to \mathbb{R}^0_+$ such that $\langle [T, a], h' \rangle \in X$. Further, h' is unique.

PROOF. There exist t_1 , $t_2 \in T$, $N \in Z_+$ such that $t_1 = N \cdot a + t_2$. Then $h(t_1) \ge h(t_2)$ by the K-condition. Define $h': [T, a] \longrightarrow \mathbb{R}^0_+$ by

$$h'(t+n\cdot a) = h(t) + \frac{n}{N}[h(t_1) - h(t_2)], \quad t \in T, n \in \mathbb{Z}^0_+,$$

$$h'(na) = \frac{n}{N}[h(t_1) - h(t_2)], \quad n \in \mathbb{Z}_+.$$

First we show that h' is well defined: $t+n\cdot a=t'+n'\cdot a$, $t,t'\in T$, $n,n'\in Z_+$, implies $N\cdot t+Nn\cdot a+(n+n')\cdot t_2=N\cdot t'+Nn'\cdot a+(n+n')\cdot t_2$, that is, $N\cdot t+n\cdot t_1+n'\cdot t_2=N\cdot t'+n'\cdot t_1+n\cdot t_2$. This shows $h'(t+n\cdot a)=h'(t'+n'\cdot a)$, hence h' is well defined. From its definition, h' is clearly a homomorphism into R_+^0 , and h'|T=h. Assume $t+n\cdot a=s+t'+n'\cdot a$ for some $a\in S$. Then $N\cdot t+n\cdot t_1+n'\cdot t_2=N\cdot s+N\cdot t'+n'\cdot t_1+n\cdot t_2$ which implies

$$N \cdot h(t) + n \cdot h(t_1) + n' \cdot h(t_2) \ge N \cdot h(t') + n' \cdot h(t_1) + n \cdot h(t_2)$$

by the K-condition. This gives $h'(t + n \cdot a) \ge h'(t' + n' \cdot a)$. Hence (T, a], $h' \ge X$. If h'' is any extension of h to a homomorphism of [T, a] into \mathbb{R}^0_+ , we must have

$$h(t_1) = h''(t_1) = N \cdot h''(a) + h''(t_2) = N \cdot h''(a) + h(t_2)$$

so that $h''(a) = N^{-1}[h(t_1) - h(t_2)] = h'(a)$. It follows that $h''(t + n \cdot a) = h'(t + n \cdot a)$ for all $t \in T$, all $n \in Z_+$, that is, h'' = h'. \square

To consider the case when $(T + [a]) \cap T = \emptyset$, we need a lemma. From now on, t_1 , t_2 , t_3 and t_4 will denote arbitrary elements of T.

Let

$$A(a) = \{n^{-1}[h(t_2) - h(t_1)]: t_1 + n \cdot a \in t_2 + S\},$$

$$B(a) = \{n^{-1}[h(t_2) - h(t_1)]: t_2 \in t_1 + n \cdot a + S\},$$

where $a \in S$, A(a) and B(a) mean the sets depending on a. Note that $0 \in A(a)$ and hence $A(a) \neq \emptyset$.

LEMMA 2.3. Let $\langle T, h \rangle \in X$ and suppose that $(S + [a]) \cap T \neq \emptyset$. Then $\sup A(a) \leq \inf B(a) < \infty$.

PROOF. Since $(S + [a]) \cap T \neq \emptyset$, there are $t_1, t_2 \in T$, $x \in S$ and $n \in Z_+$ such that $t_2 = t_1 + n \cdot a + x$. Hence $B(a) \neq \emptyset$ and $Inf B(a) < \infty$. Suppose $t_1 + n_1 \cdot a = t_2 + s_1$ and $t_4 = t_3 + n_2 \cdot a + s_2$ where $n_1, n_2 \in Z_+, s_1, s_2 \in S$. Then $n_1 \cdot t_4 + n_2 \cdot t_1 = n_1 \cdot t_3 + n_2 \cdot t_2 + n_2 \cdot s_1 + n_1 \cdot s_2$. By the K-condition, $n_1 \cdot h(t_4) + n_2 \cdot h(t_1) \geqslant n_1 \cdot h(t_3) + n_2 \cdot h(t_2)$. Hence $n_2^{-1}[h(t_4) - h(t_3)] \geqslant n_1^{-1}[h(t_2) - h(t_1)]$. Thus we get $Sup A(a) \leq Inf B(a)$. \square

LEMMA 2.4. Let $\langle T, h \rangle \in X$ and suppose that $(S + [a]) \cap T \neq \emptyset$ but $(T + [a]) \cap T = \emptyset$. Then h can be extended to a homomorphism $h' : [T, a] \rightarrow \mathbb{R}^0_+$ and $\langle [T, a], h' \rangle \in X$. The h' is determined by choosing h'(a) such that $\sup A(a) \leq h'(a) \leq \inf B(a)$. Moreover, every extension h'' of h to [T, a] such that $\langle [T, a], h'' \rangle \in X$ is obtained in this way.

PROOF. Choose $b \in \mathbb{R}^0_+$ such that

$$(2.4.1) Sup A(a) \le b \le Inf B(a).$$

Define

(2.4.2)
$$h'(t+n\cdot a) = h(t) + n\cdot b \quad \text{for } t \in T, \ n \in \mathbb{Z}_+^0.$$
$$h'(na) = nb \qquad \text{for } n \in \mathbb{Z}_+.$$

Since S is cancellative and $(T + [a]) \cap T = \emptyset$, every element of T + [a] is uniquely expressed as $t + n \cdot a$ and hence h' is well defined. Then h' is clearly a homomorphism $[T, a] \longrightarrow \mathbb{R}^0_+$ and h'|T = h. Suppose that $t_1 + n_1 \cdot a = t_2 + n_2 \cdot a + s$, n_1 , $n_2 \in \mathbb{Z}^0_+$, $s \in S$. Then there are three possibilities: $n_1 = n_2$, $n_1 > n_2$ and $n_1 < n_2$. If $n_1 = n_2$, then, since S is cancellative, $t_1 = t_2 + s$, hence $h(t_1) \ge h(t_2)$ by the K-condition. This implies $h'(t_1 + n_1 \cdot a) \ge h'(t_2 + n_2 \cdot a)$.

If $n_1 > n_2$, then $t_1 + (n_1 - n_2) \cdot a = t_2 + s$ and, by the choice of b, $h(t_2) - h(t_1) \le (n_1 - n_2) \cdot b.$

This implies

$$h'(t_2+n_2\cdot a)=h(t_2)+n_2\cdot b\leqslant h(t_1)+n_1\cdot b=h'(t_1+n_1\cdot a).$$
 If $n_1< n_2$, then $t_1=t_2+(n_2-n_1)\cdot a+s$. By the choice of b ,

$$(n_2 - n_1) \cdot b \leq h(t_1) - h(t_2).$$

This gives

$$h'(t_2 + n_2 \cdot a) = h(t_2) + n_2 \cdot b \le h(t_1) + n_1 \cdot b = h'(t_1 + n_1 \cdot a).$$

Therefore $\langle [T, a], h' \rangle \in X$.

Assume that h'' is an extension of h to [T, a] and that $t_1 + n_1 \cdot a = t_2 + s_1$ and $t_4 = t_3 + n_2 \cdot a + s_2$, $n_1, n_2 \in Z_+$, $s_1, s_2 \in S$. Using the assumption that h'' obeys the K-condition, $t_1 + n_1 a = t_2 + s$ gives $h''(t_1) + n_1 h''(a) \ge h''(t_2)$, so that $h''(a) \ge (h(t_2) - h(t_1))/n_1$, hence $h''(a) \ge \sup A(a)$. Likewise we have $h''(a) \le (h(t_4) - h(t_3))/n_2$, hence $h''(a) \le \inf B(a)$. By the former half of the lemma, $\langle T, a \rangle$, $h'' \rangle \in X$. \square

COROLLARY 2.5. In Lemma 2.4, the extension h' is unique if and only if (2.5.1) Sup A(a) = Inf B(a).

PROOF OF SUFFICIENCY OF THEOREM 2.1. Define the partial order in X by $\langle T_1, h_1 \rangle \leq \langle T_2, h_2 \rangle$ if and only if $T_1 \subseteq T_2$ and h_2 is an extension of h_1 to T_2 . Then it is easy to see that X satisfies the condition for Zorn's lemma and so X has maximal members. To show that any such maximal member has domain S, it suffices to show that if $\langle T, h \rangle \in X$ and $a \notin T$, then h can be extended to $h' \colon [T, a] \longrightarrow \mathbb{R}_+^0$ such that $\langle [T, a], h' \rangle \in X$. Since T is cofinal, $(S + [a]) \cap T \neq \emptyset$, furthermore there are two possibilities: $(T + [a]) \cap T \neq \emptyset$ and $(T + [a]) \cap T = \emptyset$. Lemma 2.2 has dealt with the first case; Lemma 2.4 has done the second case. Thus the theorem has been proved. \square

COROLLARY 2.6. Let S be a commutative cancellative semigroup and T_0 a unitary cofinal subsemigroup of S. Then every homomorphism h of T_0 into \mathbb{R}^0_+ can be extended to S.

PROOF. Every h satisfies the K-condition.

COROLLARY 2.7. Let T_0 be an ideal of S. Then every homomorphism h of T_0 into \mathbb{R}^0_+ can be uniquely extended to S.

PROOF. Lemma 2.2 is applied to this case since $(T_0 + [a]) \cap T_0 \neq \emptyset$ for each $a \in S$. The direct alternate proof of this corollary is left for the reader's exercise. \square

Since every subsemigroup of a commutative archimedean semigroup is cofinal, Theorem 1.1 is a special case of Theorem 2.1.

THEOREM 2.8. Let T be a cofinal subsemigroup of a commutative cancellative subsemigroup S, and let $h: T \to \mathbb{R}^0_+$ be a homomorphism. Then h admits a unique extension to S if and only if, for each $a \in S$, $\sup A(a) = \inf B(a)$.

PROOF. Assume h admits a unique extention to S. Then $\langle T, h \rangle$ satisfies the K-condition. Suppose that h_1 and h_2 are distinct extensions such that $\langle [T, a], h_1 \rangle$ and $\langle [T, a], h_2 \rangle$ obey the K-condition for some $a \notin T$. Then $(S + [a]) \cap T \neq \emptyset$ since T is cofinal in S; $(T + [a]) \cap T = \emptyset$ by Lemma 2.2. Now Lemma 2.4 shows that $\langle [T, a], h_1 \rangle$ and $\langle [T, a], h_2 \rangle$ are in X. By Theorem 2.1, h_1 and h_2 can be extended to homomorphisms $h'_1: S \to \mathbb{R}^0_+$ and $h'_2: S \to \mathbb{R}^0_+$ respectively; but $h'_1 \neq h'_2$. This contradicts the assumption. Therefore h admits a unique extension to [T, a] for each $a \notin T$. If $(T + [a]) \cap T \neq \emptyset$, we can easily show that if $n \in \mathbb{Z}_+$, t_1 , $t_2 \in T$ and $t_1 + n \cdot a = t_2$, then

$$\sup A(a) = \inf B(a) = (h(t_2) - h(t_1))/n.$$

If $(T + [a]) \cap T = \emptyset$, then Corollary 2.5 shows $\sup A(a) = \inf B(a)$.

Conversely, suppose $\sup A(a) = \inf B(a)$ for every $a \in S$. If $t_2 = t_1 + s$, $t_1, t_2 \in T$, $s \in S$, then $2t_2 \in 2t_1 + s + S$, which implies

$$\inf B(s) \le 2[h(t_2) - h(t_1)].$$

As $t_1 + 2 \cdot s \in t_2 + S$, Sup $A(s) \ge \frac{1}{2}[h(t_2) - h(t_1)]$. Hence

$$\frac{1}{2}[h(t_2) - h(t_1)] \le 2[h(t_2) - h(t_1)].$$

It follows that $h(t_2) \ge h(t_1)$. Hence h satisfies the K-condition, and so h is extended to S. By Lemma 2.2 and Corollary 2.5, the extension is unique since $\sup A(a) = \inf B(a)$ for each $a \in S$. \square

3. Boundedness condition. In Lemma 2.3, we see that the set A is bounded. In light of this, we will introduce the boundedness condition (\mathcal{B} -condition). In this section, we assume that S is a commutative cancellative semigroup and let $P = S \setminus F$ where P is a prime ideal, $P \neq \emptyset$, and F is a filter [3], $F \neq \emptyset$. Let $a \in P$. The subsemigroup of S generated by P and P is denoted by P (P or P or P if P is fixed. We define the relation P on P as follows: P and P if and only if P is an equiva-

lence relation on P and each ρ -class is a subsemigroup of P; i.e., ρ has the following properties:

- (3.1.1) $x \rho y$ implies $x \rho x + y$ for all $x, y \in P$.
- (3.1.2) $x \rho m \cdot x + t$ for all $t \in F$ and all $m \in Z_+$. Let Q(a) denote the ρ -class containing $a \in P$. Let $U_F(a)$ or U(a) = [Q(a), F], i.e., the subsemigroup of S generated by Q(a) and F. By (3.1.1) and (3.1.2), we see $Q(a) + F \subseteq Q(a)$. If $s, t \in F$ and $b \in Q(a)$, then $k \cdot b + s = l \cdot b + t$, $(k, l \in Z_+^0)$, implies k = l and s = t. In fact, if k > l, $(k - l) \cdot b + s = t$ by cancellation, but this is impossible since F is a filter and $b \in P$. Hence $k \leq l$. Likewise $k \geq l$. Therefore, k = l, and hence s = t by cancellation. Thus we have
- (3.2) Each element of Q(a) + F has a unique expression as the sum of an element of Q(a) and an element of F.

As defined in §1, \overline{X} denotes the unitary closure of X and \widetilde{X} denotes the filter closure of X.

LEMMA 3.3.

(3.3.1)
$$U(a) = \{x \in S: m \cdot x \in \overline{P(a)} \text{ for some } m \in Z_+\}$$
 and

$$\overline{P(a)} \subseteq U(a) = \overline{U(a)} \subseteq \widetilde{P(a)} = \widetilde{U(a)}.$$

PROOF. (3.3.1) If $x \in F$, then $x \in P(a) \subseteq \overline{P(a)}$. If $x \in Q(a)$, then $m \cdot x + s = n \cdot a + t$ for some $s, t \in F$, some $m, n \in Z_+$; hence $m \cdot x \in \overline{P(a)}$. Therefore U(a) is contained in the set at the right-hand side. To prove the other direction, let $m \cdot x \in \overline{P(a)}$. By definition, $n \cdot a + s + m \cdot x = l \cdot a + t$ for some $s, t \in F$, and some $n, l \in Z_+^0$. Suppose n > l. Then a + z = t for some $z \in S$. This contradicts $a \in P$. Hence $n \le l$. If n = l, then $x \in F$. If n < l, then $m \cdot x + s = (l - n) \cdot a + t$ which implies $x \in Q(a)$, hence $x \in U(a)$. Thus we have (3.3.1).

(3.3.2) It immediately follows from (3.3.1) and the definition that $\overline{P(a)} \subseteq U(a) \subseteq P(a)$. Taking their filter closures, we get P(a) = U(a) by (1.2.3). It remains to show $\overline{U(a)} \subseteq U(a)$. Let $x \in \overline{U(a)}$. Then b = c + x for some $b, c \in U(a)$. By (3.3.1), we can choose $m \in Z_+$ such that $m \cdot b$, $m \cdot c \in \overline{P(a)}$. Since $m \cdot b = m \cdot c + m \cdot x$ and $\overline{P(a)}$ is unitary by (1.2.2), we see that $m \cdot x \in \overline{P(a)}$. So $x \in U(a)$. Therefore $\overline{U(a)} \subseteq U(a)$. This completes the proof. \Box

Let T be a subsemigroup of a commutative cancellative semigroup S and let $h \in \text{Hom}(T, \mathbb{R}^0_+)$. We say that $\langle T, h \rangle$ satisfies the \mathcal{B} -condition (boundedness condition) in S if, for each $a \in S$, there is an $M \in \mathbb{R}^0_+$ such that

(B)
$$x, y \in T, m \in \mathbb{Z}^0_+$$
 and $y + m \cdot a \in x + S$ implies $h(x) - h(y) \le m \cdot M$.

Here M is required to be independent of x, y and m. The notation $0 \cdot a + y$ expresses y itself, and hence the B-condition implies the K-condition. The B-condition is equivalent to the combination of the K-condition and the following:

For each $a \in S$, the set

(B')
$$\{m^{-1}[h(x) - h(y)]: x, y \in T, m \in Z_+, y + m \cdot a \in x + S\}$$
 is bounded.

LEMMA 3.4. The following are equivalent:

(3.4.1) $\langle T, h \rangle$ satisfies the K-condition in S.

(3.4.2) h is extended to $\bar{h} \in \text{Hom}(\bar{T}, \mathbb{R}^0_+)$.

(3.4.3) h is extended to $\widetilde{h} \in \text{Hom}(\widetilde{T}, \mathbb{R}^0_+)$.

PROOF. (3.4.1) \Rightarrow (3.4.2). This follows from Theorem 2.1 since T is cofinal in \overline{T} .

 $(3.4.2) \Rightarrow (3.4.3)$. Since \overline{T} is unitary cofinal in \widetilde{T} by (1.2.4), \overline{h} can be extended to $\widetilde{h} \in \text{Hom}(\widetilde{T}, \mathbb{R}^0_+)$ by Corollary 2.6, and hence h is extended to \widetilde{T} .

 $(3.4.3) \Rightarrow (3.4.1)$. This is obvious from the definition of \widetilde{T} . \Box

LEMMA 3.5. Let T be a filter of S, $T \neq S$, and let $h \in \text{Hom}(T, \mathbb{R}^0_+)$. Let $a \in S \setminus T$ and $r \in \mathbb{R}^0_+$. Define $h_r: \mathbb{P}_T(a) \longrightarrow \mathbb{R}^0_+$ by

$$h_r(x) = \begin{cases} m \cdot r + h(s) & \text{if } x = m \cdot a + s \text{ where } m \in \mathbb{Z}_+^0, s \in T, \\ m \cdot r & \text{if } x = m \cdot a \text{ where } m \in \mathbb{Z}_+. \end{cases}$$

Every extension of h to $P_T(a)$ is obtained as h, for some $r \in \mathbb{R}^0_+$.

PROOF. Since the expression of x is unique, h_r is well defined. The proof of the lemma is easy. \Box

THEOREM 3.6. Let T be a filter of a commutative cancellative semigroup S, $T \neq S$, and let $h \in \text{Hom}(T, \mathbb{R}^0_+)$. Then the following are equivalent:

(3.6.1) $\langle T, h \rangle$ satisfies the B-condition.

(3.6.2) h can be extended to $\widetilde{\mathbf{U}_{T}(a)}$ for each $a \in S \setminus T$.

(3.6.3) For each $a \in S\backslash T$, $\langle P_T(a), h_r \rangle$ satisfies the K-condition in S for some $r \in \mathbb{R}_+$.

PROOF. (3.6.1)
$$\Rightarrow$$
 (3.6.2). Choose $r \in \mathbb{R}_+$ such that $r \ge \sup \{m^{-1}[h(x) - h(y)]: y + m \cdot a \in x + S\}$

and then define \bar{h} : $U_T(a) \longrightarrow \mathbb{R}^0_+$ by

$$\frac{\overline{h}}{h}(b) = \begin{cases}
h(b) & \text{if } b \in T, \\
\frac{m \cdot r + h(s) - h(t)}{n} & \text{if } b \in Q(a) \text{ and } n \cdot b + t = m \cdot a + s \\
& \text{for some } s, t \in T.
\end{cases}$$

By the choice of r, $\overline{h}(b) \ge 0$ for all $b \in U_T(a)$. To show \overline{h} is well defined, let $n \cdot b + t = m \cdot a + s$ and $n_1 \cdot b + t_1 = m_1 \cdot a + s_1$ where s, t, s_1 , $t_1 \in T$. Then we have $(mn_1) \cdot a + n_1 \cdot s + n \cdot t_1 = (m_1n) \cdot a + n \cdot s_1 + n_1 \cdot t$ which implies $mn_1 = m_1n$ and $n_1 \cdot s + n \cdot t_1 = n \cdot s_1 + n_1 \cdot t$ since T is a filter. Then it follows that \overline{h} is well defined. Next we show that \overline{h} is a homomorphism. If b, $c \in Q(a)$, then $n \cdot b + t = m \cdot a + s$, $k \cdot c + u = l \cdot a + v$ for some t, s, u, $v \in T$, n, m, k, $l \in Z_+$; so $(nk) \cdot (b + c) + k \cdot t + n \cdot u = (mk + ln) \cdot a + k \cdot s + n \cdot v$ which implies $\overline{h}(b) + \overline{h}(c) = \overline{h}(b + c)$. If $b \in Q(a)$ and $c \in T$, then $n \cdot b + t = m \cdot a + s$ and $n \cdot (b + c) + t = m \cdot a + s + n \cdot c$, so the same result follows, and we see $\overline{h}(b) + \overline{h}(c) = \overline{h}(b + c)$ for all b, $c \in U_T(a)$. Since $U_T(a)$ is unitary cofinal in $U_T(a)$ by Lemma 3.3 and (1.2.4), \overline{h} can be extended to $\overline{h} \in \operatorname{Hom}(\overline{U_T(a)}, R_+^0)$ by Corollary 2.6.

 $(3.6.2) \Rightarrow (3.6.1)$. Let $x, y \in T$ and assume $b + x = m \cdot a + y$ for some $b \in S$. Hence $b \in Q(a)$. By assumption, h is extended to $h \in Hom(U_T(a), \mathbb{R}^0_+)$, and $m \cdot h(a) + h(y) - h(x) = h(b) \ge 0$ which implies the conclusion.

 $(3.6.2) \Rightarrow (3.6.3)$. By Lemma 3.3, $\widetilde{\mathbf{U}_T(a)} = \widetilde{\mathbf{P}_T(a)}$. Let \widetilde{h} be the extension of h to $\widetilde{\mathbf{U}_T(a)}$. Then $\widetilde{h} | \mathbf{P}_T(a) = h_r$ for some $r \in \mathbb{R}^0_+$ by Lemma 3.5. By Lemma 3.4, $\langle P_T(a), h_r \rangle$ satisfies the K-condition.

 $(3.6.3) \Rightarrow (3.6.2)$. Again use Lemma 3.3 and Lemma 3.4. \Box

4. Examples. Examples 4.1, 4.2 and 4.3 show that the K-condition does not imply the B-condition; Theorem 2.1 is not true in general if T_0 is not cofinal.

EXAMPLE 4.1. A commutative cancellative idempotent-free semigroup S is defined by

$$S = \{(x, y): y \in Z_+ \text{ if } x = 0, y \in Z \text{ if } x \in Z_+\}$$

in which the operation is

$$(x, y) + (z, u) = (x + z, y + u).$$

Let $T_0 = \{(0, y): y \in Z_+\}$. T_0 is not cofinal in S. Define $h_0 \in \operatorname{Hom}(T_0, \mathbb{R}^0_+)$ by $h_0(0, y) = y$. Suppose h_0 is extended to $h \in \operatorname{Hom}(S, \mathbb{R}^0_+)$. Let $x_0 \in Z_+$ be fixed and let $\lambda = h(x_0, 0)$, $\lambda \in \mathbb{R}^0_+$. Choose $y \in Z_+$ such that $y > \lambda$. Then $h(x_0, -y) + h(0, y) = h(x_0, 0) = \lambda$, hence $h(x_0, -y) = \lambda - y \ge 0$. This is a contradiction. Therefore h_0 cannot be extended to any element of $\operatorname{Hom}(S, \mathbb{R}^0_+)$.

Let $(b, c) \in S \setminus T_0$ be fixed. Take arbitrarily $x, y, m \in Z_+$. Let p = mb, and q = mc + y - x. Then $p \in Z_+$, $q \in Z$ and $(0, x) + (p, q) = m \cdot (b, c) + (0, y)$. Since $(x - y)/m = (h_0(0, x) - h_0(0, y))/m$ can be arbitrarily large, $\langle T_0, h_0 \rangle$ does not satisfy the B-condition. Since T_0 is a filter of S, the K-condition is satisfied by $\langle T_0, h_0 \rangle$.

EXAMPLE 4.2. Let $S = \{(x, y): x \in \mathbb{Z}_+^0, y \in \mathbb{Z}, y \ge 1 - x^2\}$ and define T_0 and h_0 by

$$T_0 = \{(0, y): y \in Z_+\}, h_0(0, y) = y.$$

 T_0 is not cofinal but is a filter in S. Suppose that h_0 can be extended to a homomorphism h of S into R_+ . For each $n \in \mathbb{Z}^0_+$, let

$$\varphi(n) = h_0(n, 1 - n^2).$$

Then $\varphi(1) + \varphi(n-1) - \varphi(n) = h_0(0, 2n-1) = 2n-1$ for each $n \in \mathbb{Z}_+$. From this recurrence relation, we have

$$n\varphi(1) + \varphi(0) - \varphi(n) = \sum_{i=1}^{n} (2i-1) = n(n+1) - n = n^{2}.$$

Since $\varphi(0) = h(0, 1) = 1$, it follows that $n\varphi(1) - \varphi(n) = n^2 - 1$. By the assumption $\varphi(n) \ge 0$ for all $n \in \mathbb{Z}_+$, we have

$$n\varphi(1) \geqslant n^2 - 1$$
 for all $n \in \mathbb{Z}_+$

hence $\varphi(1) \ge n - 1/n$ for all $n \in Z_+$. This is impossible. It follows that h_0 cannot be extended to an element of Hom (S, \mathbb{R}^0_+) . We show that the B-condition is not satisfied. Let $m \in Z_+$, m > 1, and choose $y, z \in Z_+$ such that $z - y = m^2 - 1$. Then

$$(0,z) + (m, 1-m^2) = m \cdot (1,0) + (0,y)$$

but (z - y)/m = m - 1/m can be taken arbitrarily large.

EXAMPLE 4.3. Let π be the transcendental real number and let $a=\pi/4$. Then $0 < \pi/4 < 1$, and a is transcendental over the field R of rational numbers. If $a_k = a^k$ $(k = 1, 2, \ldots)$ $(a^k$ is the usual kth power of a), then $1, a_1, a_2, \ldots$ are linearly independent over R and $0 < a_k < 1$ $(k = 1, 2, \ldots)$. Let T_0 be the additive semigroup of R_+ generated by a_1, \ldots, a_k, \ldots T_0 is actually a free commutative semigroup over a_1, \ldots, a_k, \ldots . Let $b_k = 1 - a_k > 0$ $(k = 1, 2, \ldots)$, and let S be the subsemigroup of R_+ generated by T and T0 and T1, T2, T3, and let T3 be the subsemigroup of T4, by the homomorphism given by T5 is a filter of T5. Define T6 is well defined. Then T7 cannot be extended to T8 to T9. For suppose T9 is extended to T9. Then T9 is a first T9 is extended to T9. Then T1 is a T1 is is a

contradiction. Finally we show that $\langle T_0, h_0 \rangle$ does not satisfy the \mathcal{B} -condition. Let $m \in \mathbb{Z}_+$ and $a_k \in T$. As $a_k | 1$, $a_k | m$ and so $a_k | (m + a_i)$ in S for all $m \in \mathbb{Z}_+$, all a_i , $a_k \in T$. Then

$$(h_0(a_k) - h_0(a_i))/m = (k - i)/m$$

is not bounded.

ACKNOWLEDGEMENT. The authors thank the referee for his kind suggestion on this paper.

ADDENDUM. The assumption of cancellation does not restrict our discussion by the following reason. Let S be a commutative semigroup, S_0 the greatest cancellative homomorphic image of S, and $g_0: S \longrightarrow S_0$ the homomorphism. If f is a homomorphism of S_0 into R_+^0 , then $h = fg_0$ is a homomorphism of S into R_+^0 . Every homomorphism h of S into R_+^0 can be obtained in this manner. Accordingly the results in this paper are extended to the case in which cancellation is not assumed.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, vol. II, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1967. MR 36 #1558.
- 2. Y. Kobayashi, Homomorphisms on N-semigroups into R_+ and the structure of N-semigroups, J. Math. Tokushima Univ. 7 (1973), 1-20. MR 48 #3831.
 - 3. M. Petrich, Introduction to semigroups, Merrill, Columbus, Ohio, 1973.
- M. S. Putcha, Positive quasi-orders on semigroups, Duke Math. J. 40 (1973), 857—
 MR 49 #2998.
- 5. T. Tamura and H. B. Hamilton, The study of commutative semigroups with greatest group homomorphism, Trans. Amer. Math. Soc. 175 (1972), 401-419. MR 47 #3581.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616